
Symmetric and antisymmetric anisotropic exchange energies as crucial factors for the

magnetic structures in MnP, FeP, CrAs and MnAs

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 5723

(http://iopscience.iop.org/0953-8984/4/26/006)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 12:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/26
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys.:Condens. Matter4(1992)5723-5134. Printed in the UK 

Symmetric and antisymmetric anisotropic exchange energies 
as crucial factors for the magnetic structures in MnP, FeP, 
CrAs and MnAs 

J Sjostrom 
Department of Theoretical Physics, Royal lnstitute of Technology, S-10044 Stockholm, 
Sweden 

Received 14 October 1991 

Abstract. The isotropic and anisotropicexchange energies in phosphide and arsenide com- 
poundswith helical orferromagneticstructureshave been studiedby meansofan anisotropic 
twc-band model. The anisotropic term is separated into a symmetric and an antisymmetric 
contribution. It appears that, incrystals with non-vanishingspin-orbit interaction, acircular 
isotropic helm minimizes the antisymmetric contribution (AEI) to the exchange energy. The 
helix is stable if the AEI compensates for the increase in the symmetric anisotropic energy 
that the deviation from a non-collinear spin arrangement causes. The band model predicts 
the correct ground state. with the exception of MnP. where the helical (ground state) and 
the ferromagnetic (high-temperature phase) configurations correspond to the same energy. 
Theresuluconfirmthatthe~~land theshapeoftheFermisurface arecrucial for thestability 
of a helical magnetic structure. 

1. introduction 

The magnetic phase diagram of Mn,-,P,Cr,As, -~ and its compounds, i.e. MnP, FeP, 
CrAs and MnAs, has been intensively studied for about two decades [l, 21. From 
experimental investigations it is well established that several magnetic transitions 
between different helical and ferromagnetic phases take place [ 2 ] .  For example, the 
magnetic structures in MnP can be separated into a double-helical Low-temperature 
phase and a ferromagnetic high-temperature phase (table 1) [3]. For FeP and CrAs, 
which belongto thesameorthorhombicspacegroup (Pnmn)asMnP, the helicalstructure 
is stable in the entire temperature range [4,5]. On the other hand, MnAs corresponds 
to a ferromagnetic spin configuration and a crystal structure of NiAs type. 

Several theoretical investigations mainly on the binary phosphide and arsenide 
compounds from Mnl_,PYCrfis,_, have been published [ 2 , 5 , 6 ] .  For example, the 
exchange interaction has been studied by Kallel et a1 [ S I  and recently by Dobrzynski et 
a1 [2]. By using a localized Heisenberg Hamiltonian and group theory, Kallel et a l [ 5 ]  
find that a stable helix exists only if the antisymmetric exchange interaction (AEI) from 
the spin-orbit interaction is extremely strong, particularly in CrAs. By assuming that 
the exchange interaction is long-ranged, Dobrzynski et a1 [2] show that this, not very 
realistic, result can be avoided. More precisely, Dobrzynski et a l [ 2 ]  find that the AEI is 
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Table 1. Transition temperatures for the helical (T,) and the ferromagnetic (Tc) phase. 
Magneticmomentsp andspin propagationvectonqmultiplied by twice the lattice parameter 
in the z direction for MnP, CrAs and FeP. Experimental results from [MI. 

MnP 46 291 1.3 15.8 

FeP 125 - 0.41 28.5 
CrAs 280 - 2.1 60.8 

necessary to establish a helix in CrAs. The occurrence of a spiral in MnP and FeP can, 
on the other hand, be understood within an isotropic Heisenberg model. 

Ashortcomingin theseinvestigationsisthat they are basedon a localized Heisenberg 
Hamiltonian, which does not take the conduction electrons into consideration in an 
appropriate way. 

In spite of the fact that the physical reason for the complex magnetic structures is not 
known in detail, it is well established that, for instance, the mechanism is different for 
the transition metals and the rare earths. For itinerant magnetic systems, such as the 3d 
metals, band properties and the shape of the Fermi surface play an important role (so- 
called nesting) [7.8]. Of vital importance also is the anisotropic exchange interaction 
[%11]. In general, this interaction consists of a symmetric (SEI) and an antisymmetric 
(AEI) term. Thes~i  isthe traditional anisotropy and hasseveralorigins, whichin principle 
are present in all solids. The AEI, on the other hand, occurs only in crystals with 
low symmetry, and its origin is the spin-orbit interaction [IO, 111. Theoretical and 
experimental investigations have shown that the A E I  favours the establishment of the 
helical structure in, for example, Fe, -,Co,Si [12], CsCuC13 [13] and MnSi [14]. 

The purpose ofthis paperistostudy, by meansof ananisotropic bandmodel, whether 
the SEI and AEI or the isotropic exchange interaction is the crucial factor for the stability 
of the competing magnetic structures in MnP, FeP, CrAs and MnAs. We will also get 
an opportunity to compare the results from a band model and a Heisenberg model. 

2. Basic theory 

In order to study the magnetic energy in a multiphase magnetically ordered system, the 
q-dependent susceptibility tensorx(q) is a very useful quantity, since its maximum value 
corresponds to the lowest exchange energy. A peak in x(q) at q = 0 would then mean 
ferromagnetism, and one at some other q would indicate a helix, spin-density wave 
(SDW) or a more complicated arrangement of the magnetic moments and with a period 
defined by that wavevector q. 

The general expression for x(q) is too complicated to use in theoretical studies and 
one has to invoke approximations. The most common approach is the electron-gas 
approximation, and for several special cases x(q)  can be calculated. This holds for 
the Hartree-Fock approximation [I51 and its correlated extension (i.e. random-phase 
approximation (RPA)) for band theory [16-20]. 

Common to almost all of these theoretical studies of the susceptibility is that one 
treats the tensor x(q) as a scalar quantity. For the systems of interest here, the Fermi 
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surfaces are probably very anisotropic, and consequently the non-diagonal elements of 
the x(q) matrix are not negligible. 

We will therefore use the anisotropicq-dependent bandmodel according toSjostrom 
[21]. It is based upon the approximation that the exchange and spin-orbit interactions 
can be treated as perturbations of a non-magnetic Hamiltonian. This leads to a Ham- 
iltonian that is not diagonal with respect to the spin-orbit term. The diagonalization 
results in an exchange energy and a susceptibility matrix that depend on the orbital 
angular momentum vector. By assuming that the magnetization from the exchange 
interaction is related to a linear response function, and applying second-order per- 
turbation theory, the following expression for the magneticenergy was obtained in [21]: 

Emag(q) = E V,,Gv:,,.SG.i(q)X-'(q)CG'.i;SE'.j(q). (1) 
G.. i.; 

Here Vex, and SG,i(q) are the Fourier components of the local exchange potential and 
the spin density; SGi(q) has the explicit form: 

S&) = (1/V) 0) expIi[qi . (R. + P )  + P . Cl} dr. (2) 

Further in (l), the summations are over reciprocal lattice vectors G,C' and space 
coordinate directions (i, j = x ,  y, 2). 

The susceptibility tensor consists of an isotropic@) term from the exchange inter- 
action and an anisotropic term kAN) arising from the exchange interaction and indirectly 
from the spin-orbit interaction via the unitary diagonalization matrix U, given in [21]. 
Thus we have 



5726 J Sj6strom 

Here F,(k, k', k - q, k' + q) is the Fourier transform of the wavefunction, and f ( x )  
is the Fermi distribution function, i.e. f(x) = 1 for x > 0 and 0 for x < 0 then T = 0. 
Further eF is the Fermi energy, AE = + E ~ ~ + ~  - E~~ - E ~ .  In general, the states k, 
k', k - q and k' + q belong to different bands. For brevity, however, the band indices 
have been suppressed in the expressions above. In (5), the summation is over all spin 
states that conserve the initial spins (s + s' = s" + SNI). 

The non-diagonal matrix elements of the susceptibility tensor (or its inverse) can 
be separated into a symmetric && = x$, af3 = x, y, z) and an antisymmetric term 
k$ = -,@). This means that the spin-dependent factors in the anisotropic energy 
expression(1)canalso beseparatedinasymmetricandanantisymmetrictermasfollows: 

(for brevity q is here an index and G and G' are omitted). 
The relation (7) can also be written in operator form as 

H = S , J ( q ) S ;  +D(q).(Sq XS: ). (8) 

Forcomparison with the Heisenberg Hamiltonian we havein (8) introduced the abbrevi- 
ationsJ(q) and D(q) ,  which correspond to the symmetric and antisymmetric tensors of 

In order to proceed we need explicit symmetric and antisymmetric expressions of 
the susceptibility. In [21], the non-diagonal susceptibility in (3) is separated into an 
antisymmetric (AS) and a symmetric (s) in the following way: 

x-1. 

11 C C (A~~ , ! - I - I I  +A~,.- I I - I I )  
bands k.k' 

x%*.,,(q) = w . 7  ' [ 
( L ( k - q ) n / L k - q  + L ~ ~ ) . / L K ) ( L ( k ' + q h / L k ' + q  + L ( k ' ) n / L k )  

and 

X&w.ij(p) = (A~,.IIII + ~ ~ , . - I - I - I - I  + ACC,,I-I-II + &G,,-II-II) 
bands k.k' 

L!dLk"L(k- ) iL<k '+q) j  
x W,i) + , L  ( K k k - q  k ' + q  

(10) 
+ L , j L k ' i L ~ k - q ) j L ( k ' + q ) i  - ( L k - q  * L k ) ( L k ' + q  ' L k ' ) d ( i d )  

L K  Lk* L k -  q Lk' + q 

Here i, j, n are space coordinate indices x, y or z,  pp is given in expression (6) .  
andA(i, j)istheantisymmetric tensor (A(i,j) = l ,A(j ,  i )  = -1  andA(i,i) = 0). Note 
also that the n coordinate in (9) is directed perpendicular to the spins. It is therefore 
obvious that the AEI expression (9) vanishes if the n component of Lk is 0 (see also (6)). 

We will, in section 4, utilize (9) and (10) to calculate the AEI and SEI. 
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3. General anisotropic properties of a helix and a spin-density wave 

In this section we show that a helix and a SDW correspond to completely different AEI 
and SEI. In order to do this, we wnte down the Fourier transform for a general spin 
density. 

S(R. + PI,  = sG.dql exp {i[q. (R, + P )  + P .GI} (11) 
G v  

where p is a distance vector in the unit cell n.  
We will consider the case when S,,,(q) can be separated into one part that describes 

a circular plane helix (S,H,,(q)) and another part that describes a sinusoidal spin-density 
wave (SZD:(q)). For this case we assume that (11) has the form 

W. + PI,  = E C [.%A.) + S~DF(~,,,)I exp{i[q * (R, + P )  + P GI} 
G I  

= (a.(u + iu) exp[iCP(q,)] + b,w sin(g, . r + @,)} 
G 1  

x expNq,,, (R, + P )  + P . Cl} (12) 
where a, and b, are constants and U ,  U, ware normalized vectors, directed in such a way 
that U and U are orthogonal to each other. Further in (12) @(q) = r .  q + +o (@,, is the 
reference phase angle). 

Let us investigate a spin component oriented in the uu plane making the angle CP 
with the U axis (e.g. a helix): 

S, =(1/2)(u,cosCP-o,sinCP)+(i/2)(u,sinCP+uu,cosCP). (13) 

For the general case whendifferent spincomponentsS,and Sgvcorrespond todifferent 
reciprocal vectors with, say, indices n and m,  one obtains the following expression for 
the spin product terms in (7): 

s,s$v + S&* = (1/2)[(u.ua + o,o@)cos(@, - @A 
+ (u,up - umus)] sin(CPP, - an) (14) 

and 

S,S& - ShS& = -(i/Z)[(u,o, - u,ua) cos(@, - an) 
+ (u,ug + u.oa)] sin(@,,, - @,J. (15) 

Here we have used (13). By inserting the relations between U,, up, U, and up, we easily 
find that the first term in (14) and the second term in (15) are equal to zero for a helix of 
a type given by (13) in the ap plane (independently of the orientation of the orthogonal 
unit vectorsu, U). On the other hand, the antisymmetricexpression u,up - u,upassumes 
its extreme value for the same type of helix. The contributions from the terms with CP,,, 
and CPncorresponding todifferent reciprocalvectorscancel to a large extent in the lattice 
summation. In the first-order approximation, (14) and (15) thus include only the term 
with C,,, = G,. = 0, and we can write 

S,S& + s,s:q=(l/2)(u,up +u,ug) (16) 
S,SJv - SpvS& = -(i/2)(unup - V,up). (17) 

Substituting (16) and (17) in the energy expression (l), we easily find that the spin 
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distribution given by the helical term in (12) minimizes the energy contribution from 
the AEI and gives a vanishing diagonal symmetric exchange if the spin distribution 
corresponds to a circular isotropic helix. 

The expressions for the SDW are to first-order approximation 

S,S& + SD& = w p B  sin(q. * r + an) 
S,Sjq - SD& = 0. 

(18) 

(19) 

By inserting (18) in (1) we find that a SDW minimizes the symmetric anisotropic energy 
(SEI) contribution, i.e. opposite to the helical case. 

A ferromagnetic structure always has the lowest anisotropic energy due to alignment 
of the spins in the 'easy' direction. This means that the diagonal terms in (1) minimize 
the energy while the non-diagonal terms vanish for ferromagnetism. A criterion for a 
stable helix is thus that the AEI does not vanish (for symmetry reasons) but compensates 
for the increase in the symmetric anisotropic energy that the deviation from a non- 
collinear spin arrangement causes. 

4. Isotropic and anisotropic exchange energy in MnP, FeP, CrAs and MnAs 

4.1. Exchange interaction 

By using energy bands and wavefunctions from linear muffin-tin orbital (LMTO) cal- 
culations and the itinerant model presented in section 2, combined with the symmetry 
arguments in section 3, we will now derive expressionsfor the different contributions to 
the exchange energy for the helical, the SDW and the ferromagnetic structures. 

Since the isotropic contributions of the exchange energy can be treated as a rather 
simple special case of the anisotropic one, we start with the latter. 

According to expression (l) ,  the difference in anisotropic energy between ferro- 
magnetism (with the spins directed along the c axis) and helimagnetism (spins in the ab 
plane) with q = qh is, with x as the reference spin direction, for MnP, FeP and CrAs, 

- X-'(qh)GC'.xy [SG,z(qh)S6'.y(qh) - SC.y(qh)S&.x(qh)l 

- sG,x (4 h k - '  (q h ) CC'.xx &.x (qh 1). (20) 

Here we have also used (7) and the fact that the angular momentum vector Lk is directed 
perpendicular to the mirror plane ab. The latter circumstance is a symmetry property of 
the space group Pnma and can be obtained either from the expression for& [22], 

L, = -(ih/4mzc2) V&)*[VV(r) X C] yr,(r) dr (21) 

or by group-theoretical treatments of the spin configurations and the Dzyaloshinski- 
Moriya (DM) vector in Pnma [5]. We note in (20) that the ferromagnetic phase and the 
hypothetical SDW is purely symmetric while the helix is both symmetric and anti- 
symmetric. 
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In the appendix, we show that the energy expression (20) is an approximately linear 
function of x and can be written in the more handy form: 

%.(feno) - 4 h e W  = ~,.(T)[XGG'.~~(O)(SG.~(O)XSE,.~(O)) - x%.&) 
C.G' 

where the constant, C,.(T), is directly proportional to the magnetic transition tem- 
perature (see the appendix). The (&(q)) are the mean value of the spin defined in the 
appendix (equation (A6)). Furthermore, in (22) the summations are restricted to first- 
and second-order terms, i.e. G and G' are equal to 0 and 1. 

If we replace the ferromagnetic structure with a SDW propagating along the z axis, 
we obtain in the same way 

4.2. Technical detaih in the calculations 
Since experimental values of the magnetic moments, the q-vectors and the transition 
temperatures are available [3-51 and .Ek as well as the band structure can be calculated 
by standard methods, numerical valuesof all thequantitiesinsection 4.1 canbe obtained. 
In order to perform this computation the following methods and approximations have 
been used. 

The band-structure calculations were performed using a self-consistent LMTO 
method. Relativistic effects are included except for the spin-orbit interaction of the 
band electrons. For the generation of the potential the local-density approximation with 
Gunnarsson-Lundqvist parametrization was adopted. The calculations were made for 
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Table 2. The various contributions to thecalculated exchange energy (meV) for the magnetic 
structuresinsection 3. Abbreviations: SAE = symmetricanisotropicexchangeenergy, AAE = 
antisymmetfic anisotropic exchange energy, A€ = total anisotropic exchange energy, IE = 
isotropic exchange energy and AE = total energy difference relative to the experimental 
ground state.The numerical inaccuracy for theenergydifferencesisestimated to be +5 meV 
between ferromagnetism and helix or SDW, 2 2  between helix and SDW (lower because the 
susceptibilities are calculated for the same qvector). The absolute values have much larger 
inaccuracy. 

SAE (mev) AAE (mev) AE (mev) IE (mev) A t  (mev) 
. , .  - -..._, “l..i . . . . . . . . . . . . . . . . . . . . . .  

MnP Helix -3 -8 -11  -442 0 
SDW -8 0 -8 -442 3 
Ferrom. -19 0 - 19 -436 -2 

FeP Helix -2 -7 -9 -192 0 
SDW -7 0 -7 -192 2 
Ferrom. - 1 1  0 - 1 1  - 180 10 

CrAs Helix -5 -16 -21 -432 0 
SDW -15 0 - 15 -432 6 
Ferrom. -19 0 - 19 -420 14 

MnAs Helix -7 0 -7 -589 15 
SDW - 17 0 - 17 -589 5 
Ferrom. -21 0 -21 -590 0 

the equilibrium volume of the orthorhombic structure with four atoms per unit cell and 
for 1428 k-points in the irreducible wedge of the Brillouin zone. The way to relate 
the potential to the local spin-density approximation (LSDA) is presented in [21]. The 
utilization of the LSDA tocomplex antiferromagneticsystemsismotivated by the fact that 
self-consistent band calculations, including anisotropy, for systems with non-collinear 
magnetic structures, have been successfully performed by e.g. Kubler et d[23]. 

It appears that there are five bands, i.e. eigenvalues E@), which cross the Fermi level 
in such a way that so-called nesting effects in principle are possible. Among these bands 
the different combinations of two-band systems have been selected in the computing of 
the susceptibility matrix. Inter- and well as intra-band interactions have been taken into 
account while excitations involving more than two bands have been neglected. The 
summations over k and k‘ are performed over the same k-mesh of the irreducible part 
of the Brillouin zone as for the band calculation. The q-vectors of the helix have 
been set equal to that k-point which deviates least from the experimental one, i.e. no 
interpolation between the k-points was performed. 

The crucial point in such a calculation is the self-energy represented by A(qh)ccr.ss.r.f 
in (6). because it involves energy differences in the denominators, which can be very 
small. We have approached this problem by using a much finer mesh in the k-space than 
for ordinary band calculations. In this way we obtain high convergence for the Fermi 
level and the energy bands. 

4.3. Results 

The results of the numerical calculations are presented in table 2. We obtain the correct 
ground states for FeP, MnAs and CrAs. For MnP the ferromagnetic spin configuration 
has the lowest energy. The difference from the experimental helical structure is, 
however, so small that it is within the numerical uncertainty. 
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These results are mainly a consequence of the fact that the matrix elements of the 
susceptibility tensor, due to band crossing effects at the Fermi level, asume a lower 
value for q = qh than for q = 0. It is interesting to note that for q = qh inter-band 
transitions give a larger contribution to the matrix elements than intra-band transitions 
while the reverse condition is valid for q = 0. The dispersion relation of Lk also favours 
the antisymmetric term, particularly for CrAs. 

It also turns out from table 2 that the total anisotropic energy varies from about 5% 
(CrAs) to 2% (MnP) of the total exchange energy. 

The values of the uncertainty presented in table 2 of the energy difference include 
only the numerical inaccuracy, i.e. we have not taken into consideration the errors from 
the approximations involved in the method. 

5. Conclusions 

The model reproduces the magnetic ground state astonishingly well. The rather high 
numerical accuracy in this not very sophisticated computational study seems to be a 
consequence of the fact that the systematic errors cancel to a large extent in the sub- 
traction in (22) and (23). In order to test the reliability of the susceptibility calculations, 
the author is planning to investigate if ,y(q) in fact assumes a peak for the experimental 
q-vector. Such a calculation is meaningful only if it is based on an interpolation in the k- 
mesh. 

Concerning the results of the arsenides the anisotropic energy, or more precisely the 
antisymmetric part, is the determining factor for the stability of the magnetic structure. 
But the AEI acts completely differently in the two systems; in MnAs the AEI vanishes 
(for symmetry reasons) and in CrAs it lowers the energy. 

In FeP and MnP the AEI is small but crucial for the energy difference between the 
helix and the SDW. The transition to the ferromagnetic phase in MnP at T = 48 K can be 
understood, in the light of the small energy difference between the two magnetic phases 
in MnP, as a thermal change of the exchange interactions. This explanation is also 
compatible with the possibility of disturbing the spiral by an external field and in such a 
way to obtain a Lifshik triple point [24]. 

Concerning the discussionsof the ratio between the isotropic andanisotropicenergy, 
this study supports the conclusions of Dobrzynski et a1 [2]. In fact it seems remarkable 
that a band model and an appropriate investigation based on the localized Heisenberg 
model can give such similar conclusions about the exchange interaction in the systems 
studied here. 

Appendix. The exchange field approximation 

Since time- and space-varying magnetic fields are generally quite small in magnetically 
ordered systems, a linear response theory is usually adequate [25].  If the band electrons 
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act as a linear medium, the susceptibility is independent of the effective magnetic field, 
and we may write [U] 

Sci(q) = ~ P B  E X*(q)m.ijHgji(q), 

Emag(q) = C v,~.cV:x.c.H~~'(Q)X*(q))co..ijHE~'f(q). (A2) 

(AI) 
C' 

By inserting (Al)  in (1) we obtain an energy expression that is directly proportional to 
the susceptibility: 

C.G' i.j 

In order to find a convenient expression for numerical calculations, we will use the 
exchange field theory. 

The general exchange field approximation that follows is essentially a combination 
of those used by James ef af [26] and Nagamiya [9]. In this approximation He" is defined 
as the thermal mean value of the magnetic field that an arbitrary atom experiences from 
all other atoms in the crystal. The physical origin of this field is the exchange interaction 
and the corresponding energy is the scalar product of the mean value of the spin (defined 
below) and the exchange field for the atom i: 

The general form of the exchange field is assumed to be a sum over exchange integrals 
and spins: 

€y =(S,) .Hf".  (-43) 

H y  = 2gspB J P ( S , )  +Ha". ('44) 
i 

Here the first term is isotropic and the second anisotropic. Since we have taken the 
anisotropy into account in the Hamiltonian, we neglect the second-order effect fromHan .. 
in (A4). 

The thermal meanvalueofthespinscan beobtainedasfollows. Weconsider a lattice 
of classical spins. The orientation of spin i will be denoted by Qi representing the polar 
and the azimuthal angles of the spin direction, i.e. Qi(+, e). Let the distribution of the 
spin i be given by the normalized function pi(Q).  The mean value of spin ican now be 
defined as 

( S i )  = IS ip , (Q)dQ.  (A5) 

Further we denote the exchange energy between spins i and j by E,~(Q;,  Qj). 

energy 

Here the internal energy U and the entropy S are given by 

We are seeking that set of distribution functions which minimizes the Helmholtzfree 

F =  U- TS. 0.6) 

U = (1/2) I dQ; p ; ( Q ; )  ~ ; j ( Q i ,  Qj)pj(Q,) dQj (A7) 

S = k s  2 p, (Q; )  In p i ( Q i )  dQi. (As) 

i.j 

i f 
Minimization of the free energy with respect to all the pi yields 

1 p j ( Q j )  ~ i j ( Q ; ,  Q j )  dQj 
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Here j3 = l/k,T. By inserting (A9) in the expression for the mean value of spin (A5) 
and using (A3) we obtain 

( S i )  = IS; exp(PS; .HfX) dQi/exp(PS; -WfX) dQ;. ( A W  

In a quantum-mechanical system the spin Si assumes a number of discrete thermally 
excited states. It is therefore convenient to replace the integrals in (A10) by a sum over 
the expectation values of the spin wavefunction, i.e. the trace (Tr) of Si. That yields 

( S i )  = Tr S i  exp(P Si .H:')/Tr exp@ Si . HP). (Al l )  
At all temperatures (Al l )  has the solution (Si) = 0 representing the disordered state. 
As the temperature decreases, solutions with non-vanishing mean spin appears if the 
exchange interaction is sufficiently strong. These solutions correspond to ordered spin 
states. 

By expanding the exponential of (All)  in powers of S; we can, as a good approxi- 
mation in the neighbourhood of a branching temperature, neglect all terms with the 
exception of the first and so obtain 

( S i )  = /3(1/3)S(S + 1)Hy  

H y  = [3ks T/S(S + l ) ] ( S i ) .  

(A12) 

6413) 

with 

By inserting the Fourier transform of (A13) in (Ai) and by using (A3) we obtain 

Here we have introduced the temperature-dependent constant given by 

Cw(T)  = V,,cV&G.3kBT/S(S + 1). (A151 
Note that CGG,(T) is independent of qin this approximation. 

Since expression (A14) has a simpler form than ( M ) ,  we will use it for studying the 
exchange energy. Finally we note that in the expressions (22) and (23) a sine term 
appears since the spins can be written as a vector (see (8)). 
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